Измерение сопротивления изоляции выполняют
для проверки диэлектрических свойств
изоляционных материалов проводов и кабельных линий.

Сопротивление изоляции

Сопротивление изоляции — важная характеристика кабельных изделий. По ней можно сделать вывод о наличии механических повреждений изоляции или степени её износа, обусловленного естественным старением и несоблюдением условий эксплуатации и, соответственно, пригодности кабеля к дальнейшей эксплуатации.

Если сопротивление ниже нормы, такой кабель нуждается в замене или ремонте.

Первоначально сопротивления изоляции необходимо измерять при сдаче объекта в эксплуатацию в ходе приемосдаточных испытаний, и измеренные значения должны соответствовать требованиям ПУЭ.

Затем, на этапе эксплуатации, эти работы регулярно выполняют в рамках эксплуатационных испытаний для профилактики возникновения дефектов, и проверяют измеренные значения на соответствие требованиям ПТЭЭП.

Периодичность измерения сопротивления изоляции

В ПТЭЭП четко указано, что периодичность, с которой измеряют параметры электробезопасности и, в том числе, сопротивление изоляции, должен определять технический руководитель. Обычно это сотрудник, ответственный за электрохозяйство: главный энергетик, главный механик, главный инженер и т.д. Выбирая интервал между испытаниями он должен учитывать требования НТД и рекомендации заводов изготовителей используемого электрооборудования.

Базовые требования по периодичности проверки электропроводок приведены в ПТЭЭП:

«Измерения сопротивления изоляции в особо опасных помещениях и наружных установках производятся 1 раз в год. В остальных случаях измерения производятся 1 раз в 3 года. При измерениях в силовых цепях должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов. В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены.»

ПТЭЭП, прил. 3.1, таблица 37.

Условия для определения степени опасности помещений в отношении поражения электрическим током даны в ПУЭ, пп. 1.1.4-1.1.13.

На объектах коммерческой недвижимости и в жилом фонде признаки отнесения помещений к особо опасным можно встретить в электрощитовых, котельных, бойлерных, ИТП, на чердаках и техэтажах, в подвалах и техподполье и т.д. На производственных объектах факторы повышенной опасности встречаются чаще, а их комбинации разнообразнее.

Теоретически, ответственный за электрохозяйство должен провести классификацию всех помещений по степени опасности поражения электрическим током в соответствии с требованиями ПУЭ, пп.1.1.-1.1.13.

Перечень всех обследованных помещений должен совпадать с экспликацией планов БТИ и/или проектной документацией. Сделать это можно самостоятельно или привлечь инженеров электроизмерительной лаборатории. Результатом такой работы будет отчет об определении степени опасности поражения электротоком.

Затем приказом по организации определяются сроки проведения отдельных видов электроизмерений для всех помещений в соответствии со степенью опасности поражения током и с учётом других факторов и требований НТД.

На основании приказа нужно внести соответствующие записи в график планово-предупредительных ремонтов.

Кстати, о требованиях НТД: условия периодичности замера сопротивления изоляции и других испытаний содержатся не только в ПУЭ и ПТЭЭП, но также и иных нормативных документах. Так, например, в организациях общественного питания измерения нужно проводить ежегодно в помещениях без повышенной опасности, и каждые полгода во всех остальных помещениях (ПОТ РМ-011-2000, п. 5.6).

Аналогичные требования установлены для предприятий химической чистки и стирки, медицинских и образовательных учреждений.

Проверка сопротивления изоляции мегомметром

Мегаомметр — прибор для измерения больших сопротивлений. В состав мегомметра входит генератор, который создаёт повышенное испытательное напряжение 250, 500, 1000 вольт. Повышенное напряжение прикладывается к паре жил при снятой нагрузке, в результате чего, через диэлектрик начинает проходить ток утечки. Прибор определяет сопротивление изоляции на основании измеренного тока и известного значения напряжения.

Если изоляция в отличном состоянии, то ток утечки через диэлектрик не пойдет. Сопротивление при этом будет стремиться к бесконечности и, как правило, превышать верхнюю границу диапазона измерений мегомметра.

Когда изоляция изношена, между жилами появляются токопроводящие «мостики», по которым идёт утечка. В обычных условиях эти утечки пренебрежимо малы и незаметны, но под воздействием повышенного напряжения ток утечки усиливается, становясь током КЗ, а сопротивление изоляции при этом стремится к нулю.

При измерении сопротивления изоляции проверяемая кабельная линия должна быть отключена от электроустановки с обеих сторон: и со стороны источника питания, и со стороны потребителя. Обычно, отключения и прерывание электроснабжения создаёт массу неудобств при проведении электроизмерений на действующем объекте. Проводить работы нужно в нерабочие часы, либо согласовывать временные отключения электроэнергии в рабочие часы.

К счастью, измерение сопротивления изоляции каждой кабельной линии занимает немного времени, а линии отключают по очереди, а не все одновременно. Когда отключение в рабочие часы невозможно, работы переносят на утренние, вечерние, ночные часы или выходные дни.

Значение сопротивления измеряется попарно для всех жил кабеля:

  • для двужильного кабеля — одно измерение;
  • для трехжильного кабеля — три измерения;
  • для четырёхжильного кабеля — шесть измерений;
  • для пятижильного кабеля — десять измерений.

Измеренные значения по каждому кабелю фиксируются инженерами электролаборатории на бумаге или в память измерительного прибора. В дальнейшем эти данные будут занесены в таблицу результатов измерений в протоколе измерения сопротивления изоляции. Если сопротивление ниже минимально допустимых значений, эта информация отражается в заключении к протоколу и дефектной ведомости технического отчёта. Такую кабельную линию нужно ремонтировать или менять.

Минимально допустимое сопротивление изоляции

Для разных электрических цепей в ПУЭ и ПТЭЭП установлены разные минимально допустимые значения. Так, например, для электропроводок минимальное значение сопротивления составляет 0,5 МОм, а для вторичных цепей и цепей управления — 1 МОм. Данные требования приведены в ПТЭЭП, прил. 3.1, табл. 37. В этой же таблице указано, какое испытательное напряжение мегаомметра нужно использовать для проверки изоляции тех или иных проводников.

Причины снижения сопротивления
и факторы износа изоляции

Если при протяжке кабелей монтажники не повредили изоляцию, то, при вводе объекта в эксплуатацию, значения сопротивления будут измеряться сотнями или даже тысячами мегаомов. Со временем изоляция изнашивается, а её сопротивление естественным образом снижается. У старых кабелей, исчерпавших свой ресурс службы, счёт идёт на единицы или десятые доли мегаомов.

Заводы-изготовители указывают срок эксплуатации своих изделий, и для современных кабелей с ПВХ-изоляцией он составляет 30-40 лет при нормальных условиях. На практике, срок службы уменьшается из-за ряда факторов, ускоряющих старение изоляции. Постепенно, старея и разрушаясь, изоляция кабеля теряет диэлектрические свойства.

Появляются микроскопические трещины, заполняемые воздухом или, что хуже, жидкостью. Образуются проводящие «мостики» по которым движутся электроны, создавая ток утечки. Со временем ток утечки усиливается, перерастая в ток КЗ. Этот процесс растягивается на годы и протекает медленно, поэтому изменения незаметны, до тех пор, пока изоляцию не пробьёт и не возникнет электрическая дуга.

Факторы, влияющие на состояние изоляции:

  • Повышенная температура. Для любого кабеля производитель указывает, при какой температуре гарантирована нормальная эксплуатация в течение заявленного срока службы изделия. Как правило, это диапазон от -50 °С до +50 °С, однако некоторые исследования показывают, что при температуре в помещении свыше 35 °С срок службы изоляции кабеля начинает сокращаться.
  • Повышенная влажность. Влажность ускоряет возникновение проводящих «мостиков» внутри изоляции, снижает диэлектрические свойства и повышает риск возникновения короткого замыкания. Помещения с влажностью близкой к 100% считаются особо опасными, и сопротивление изоляции в таких помещениях измеряют не реже 1 раза в год.
  • Химически активные или органические среды. Агрессивные пары, газы, жидкости, отложения или плесень также приводят к преждевременному старению изоляционных материалов.
  • Перегрузка линии. Если по жилам кабеля постоянно идет ток, превышающий номинальное значение, то нагрев жилы будет пагубно сказываться и на изоляции, вплоть до её оплавления и растрескивания.
  • Вибрация. Постоянное воздействие механических колебаний будет дополнительным фактором разрушения изоляции.
  • Токопроводящая пыль. Скапливаясь в местах разделки кабеля и зачистки жил, она способствует появлению токов утечки и, в связке с повышенной влажностью, увеличивает вероятность возникновению замыкания.

Выводы о необходимости проверки изоляции

Регулярное проведение измерений сопротивления изоляции даёт возможность диагностировать развитие дефектов и вести профилактику до появления короткого замыкания.

Проводить измерения следует не реже, чем 1 раз в 3 года, а в некоторых помещениях— ежегодно или даже раз в полгода. Следует заранее озаботиться организационными вопросами, связанными с отключениями: оповестить жителей дома или сотрудников организации о предстоящих перерывах в электроснабжении, предоставить доступ специалистам электролаборатории во все необходимые помещения.

Результаты измерений будут оформлены в виде соответствующего протокола в составе технического отчёта об испытаниях электроустановки.